สมบัติของลอการิทึม

วันนี้นั่งสอนเด็กๆแก้สมการลอการิทึม ปัญหาที่พบคือแก้สมการลอการิทึมไม่ได้สาเหตุที่แก้ไม่ได้คือดูโจทย์

แล้วไม่รู้ว่าจะเริ่มต้นยังไง ซึ่งการที่เราจะแก้สมการลอการิทึมได้เราต้องรู้จักคุณสมบัติของลอการิทึมและนำคุณสมบัตินี้ไปใช้ในการแก้สมการซึ่งวันนี้ผมจะสรุปสมบัติทั้งหมดที่จำเป็นต้องนำไปใช้และจะแสดงตัวอย่างการแก้สมการให้ได้ดู  ถ้าชื่นชอบและเห็นว่ามีประโยชน์อย่าลืมปันน้ำใจให้กับเวบด้วยน่ะคับ..

สมบัติที่สำคัญของลอการิทึมมีดังต่อไปนี้

เมื่อ a ,M,N เป็นจำนวนจริงบวกที่ \(a\neq 1\) และ k เป็นจำนวนจริง

1. \(\log_{a}MN = \log_{a}M+\log_{a}N\)  ลอกคูณเท่ากับลอกบวก

2.\(\log_{a}\frac{M}{N}=\log_{a}M-\log_{a}N\) ลอกหารเท่ากับลอกลบ

3.\(\log_{a}M^{k}=k\log_{a}M\)

4.\(\log_{a}a=1\)

5.\(\log_{a}1=0\)

6.\(\log_{a^{k}}M=\frac{1}{k}\log_{a}M\)

7.\(\log_{b}a=\frac{1}{\log_{a}b}\)

8.\(log_{b}a=\frac{\log a}{\log b}\)   ข้อนี้เป็นการเปลี่ยนฐานล็อกคับ เปลี่ยนเป็นฐานอะไรก็ได้เช่น

\(\log_{5}2=\frac{\log 2}{\log 5}\)   อันนี้เปลี่ยนเป็นฐานสิบเปลี่ยนเป็นฐานอื่นที่ไม่ใช่ฐานสิบก็ได้น่ะเลือกฐานตามสบายเลย  เช่น

\(\log_{5}2=\frac{\log_{3}2}{\log_{3}5}\)  อันนี้เปลี่ยนเป็นฐานสาม

อ๋ออีกข้อคืออันนี้ก็สำคัญไม่แพ้กันคือการเปลี่ยนสมการลอกให้เป็นสามการเลขยกกำลังคือ

9. ถ้าสมการล็อกคือ \(y=\log_{a}x\)  สามารถเปลี่ยนเป็นสมการเลขยกกำลังได้คือ  \(x=a^{y}\)

เนื่องจากฟังก์ชันลอการิทึมเป็นฟังก์ชัน 1-1 โดยอาศัยสมบัติของฟังก์ชัน 1-1 จะได้ว่า

\(\log_{a}x=\log_{a}y\) ก็ต่อเมื่อ \(x=y\)

และสมบัติที่ต้องนำมาใช้บ่อยในการทำข้อสอบอีกตัวหนึ่งก็คือ

\(a^{\log_{a}x}=x\)

สมบัติที่สำคัญของลอการิทึมก็มีเท่านี้คับ...ต้องจำให้ได้น่ะ...ไปหาวิธีการจำเองแล้วกัน...เทคนิคใครเทคนิคมัน...น่ะเรื่องความจำ...ที่สำคัญถ้าจำไม่ได้ทำข้อสอบ..ไม่ได้แน่...สู้ๆๆๆๆ

ตัวอย่างของฟังก์ชันเอ็กซ์โพเนนเชียล...เช่น

y=2^{x}

ถ้าให้x=1จะได้y=2^{1}=2

ถ้าให้x=2จะได้y=2^{2}=4

ถ้าให้x=3จะได้y=2^{3}=8

ถ้าให้x=4จะได้y=2^{4}=16

ติดต่อ 0988281419 หรือ wisanu.kkung@gmail.com